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1. INTRODUCTION 

THE PROBLEM considered is that of a pipe in which flows a 
fluid that may evaporate. A uniform heat Rux is supplied 
along the pipe and is independent of the flow rate inside 
the pipe. This may be the case in nuclear reactor cores, in 
electrically heated tubes or as an approximation in cases 
where the pipe is heated by radiation by high temperature 
flames. The fluid enters the pipe as a sub-cooled liquid and 
exits the pipe as a liquid-vapor mixture. An increase in the 
mass fiow rate causes both an increase in the frictional pres- 
sure drop and a decrease in the length of the two-phase zone, 
and in the exit vapor fraction, causing a smaller change 
in momentum flux. These conflicting effects result in the 
possibility of a local maximum in the variation of pressure 
drop with flow rate, as will be shown later. 

2. ANALYTICAL MODEL 

In order to understand the physics of the phenomenon, 
we shall first develop a simplified approximation, for which 
an analytical solution can be derived. This will then be com- 
pared with a numerical simulation of the system described. 
The assumptions of the model are : 

(a) Liquid and vapor properties are constants (AHrv, 
AFL,, FL* C,,). 

(b) The pressure drop is small and therefore the saturation 
temperature, T,, is conslant. 

(c) The liquid viscosity is constant and the two-phase 
mixture viscosity is equal to the liquid viscosity. 

(d) The flow is turbulent and the friction factor is 
described by the Blasius approximation : _fr = 0.079 Rem”.25. 

(e) The two-phase flow is described by the homogeneous 
fiow model. 

ff) The heat input to the pipe, 4%“. is uniform. 
(g) The flow is one dimensional (no radial changes). 
(h) Axial heat conduction is neglected. 
(i) In the two-phase zone, the fluid is in equilibrium at 

all points. 
(j) Steady state conditions are assumed throughout. 

We note that assumptions (a)-(c) above do not apply to the 
--__ I_____ 
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numerical simulations brought in Section 3. The two model 
equations are : 

Energy balance : 

dfi 
m x = 4,. 

In the liquid zone : 

dH dl- 
z = CC,, 

In the two-phase zone : 

.g = AH, !?$? 

(1) 

(lb) 

Momentum balance : 

dP dP, dP, 
;i7=dl+dl. (2) 

Here, the terms on the right hand side are the frictional 
pressure gradient : 

and the pressure gradient due to acceleration : 

dP -! - 
dl - -&u’)). 

(3) 

(4) 

These can be expressed in terms of m: pu = d = i/A ; 
PU’ = c2ip = ti2/A2* (V> ; Re = 4ti/nDp. In the two-phase 
region : 

and 

d(V) -= 
dl 

AV do 
Ly dl 

From (1) and (lb) : 

d<x) Y,n 

dl rirdH,v’ 

Substituting into (4) gives : 



4498 Technical Notes 

NOMENCLATURE 

pipe cross-sectional area [m”] 
a constant, 2*0.079ii0 ‘5/,425” ‘5(4in)” z5 
[kg” 15 s-0 li m ..“] 

specific heat of liquid [kJ kg- ’ C ‘1 
dimensionless subcooling, C,,( r,- T,)jAHt, 
pipe diameter ]m] 
Blasius friction factor, 0.079 Rem ’ ” 
pipe length [m] 
position along pipe at which boiling starts [m] 
total pipe length [m] 
mass flow rate [kg s ‘1 
critical mass flow rate, (y,,l,,)/(CpLIT,- T!]) 
dimensionless mass flow rate, r@‘ti* 
single phase liquid momentum flux, (ri?‘iA’) Vi_ 
mass flux [kgm ’ s ‘1 
enthalpy [kJ kg. ‘1 
heat input to the pipe [kW m -‘] 
Reynolds number 
temperature [’ C] 
inlet temperature [C] 
~turati[~n temperature [‘Cl 

u fluid velocity [m s ‘] 
I’ 
( G> 

liquid specific volume [m’ kg ‘1 
average specific volume of the fluid [m’ kg ‘1 

dimensionless volume change, A I’,,,! 1’,_ 
<S) vapor mass fraction 

.2 dimensionless required heat of vaporization. 

(+rAHi.)l(y,,,&,) 
A&V heat of vaporization [kJ kg ‘J 
AP total pressure drop [bar] 
A!‘<, pressure drop due to acceleration [bar] 
AP, pressure drop due to friction [bar] 
APrr pressure drop due to friction for single phase 

liquid tlow [bar] 
Al’, v specific volume change due to vaporization 

[m’kg ‘1. 

Greek symbols 

P dynamic viscosity of the fluid [bars] 

/) fluid density [kgm- ‘1. 

W 

and when substituted into equation (3) gives : 

df’r 
dl 

- Qn ’ =( VL t (r)A I’,,) (5) 

where C is a constant. At a given flow rate i of a fluid 
entering the pipe at a temperature T,, boiiing wili start at 
point 1 = I,, where: 

This is a direct result of (la). The vapor fraction, (x), can 
now be expressed explicitly as a function of I: 

Integrating equations (3) and (4) over the pipe length lo, we 
obtain an expression for the overall pressure drop, defined 
as the inlet pressure minus the outlet pressure (so it is a 
positive term). This expression can be presented in a general 
form by defining the following groups : 

(a) Dimensionless subcooiing: c, = C,,(T,- T,)/AHLv. 
(b) Dimensionless required heat of vaporization : 

T? = ri?AH,,/q,,l,. 
{c) Dimensionless volume change : P = A Vz .i V, 
(d) Single phase liquid momentum flux: M,, = ti2VLjA2. 
(e) Single phase liquid pressure drop 

AP,, 3 - Cl,J’i,ti’.7’. 
(f) Critical Row rate, ti* = y,,i,K&(T,- T,). 
(g) Dimensionless mass flow rate,_ _ 

/ii = tic&T,- T,)/y,,l, = ti/rfi* = xcp. 
(h) Characteristic frictional pressure drop, 

APT,_ 3 APrL(tir*) = CI, VLti*’ =. 
(i) Characteristic momentum flux, 

M: = M, (ti*) = ti*zv, /‘4 2. 

Physically, ti* is the Row rate at which the exciting fluid is 
saturated liquid exactly at its boiling point. The general form 
for the overall pressure drop thus obtained is : 

This model is valid for c”, > 0 (meaning that the entering 
fluid is subcooled) and for 61 < 1 (meaning that tir < tli”). 
For 6i > 1 1 the pressure drop is expressed by : 

Equation (8) has negative coefficients : that of A’ is always 
negative and that of ril’ 75 IS negative when ci, P > 1. The 
presence of negative coefficients in a polynomial means that 
there is the possibility of local extrema. In this case, it means 
that applying the specified pressure drop may result in more 
than one steady state flow rate. Differentiation of equation 
(8) with respect ,$ 6i yields a condition for the existence of 

extrema. If dAP/dt%? = 0 has real roots in the range 
0 < ni < 1, then equation (8) will have a region of multi- 
plicity. Since equation (8) has only two parameters, namely 
(??P and Mc/APF,, it is possible to map the region of par- 
ameters for which steady state multiplicity occurs. Figure I 
shows such a map; parameter values above the line will give 
steady state inultiplicity. 

3. NUMERICAL SITUATION 

The fundamental equations (1) and (2) were approximated 
by finite difference equations : 

rid H = q3. * Ai (IO) 

FIG. I. The steady state multiplicity region in the space o“ 
the design parameters ?p P and ~~~AP~ 
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1.7. . Analytical model (equationsWand(9)) 
, ,6 + Simulation with separate flow model 
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2. Variation of total pressure drop with mass flow rate 
for water-steam flow in the steady state multlphclty region. 

AP = s ; Al+ A((pu’)). 

The two equations were integrated by summation over pipe 
segments to yield the pressure profile in a pipe. The fluid 
properties were calculated at each segment as a function 
of P and H. For the simulation of water-steam flow, the 
properties were taken to be those of saturated liquid and 
vapor at the given pressure in the two-phase zone and at the 
given temperature in the liquid zone. The properties were 
interpolated from published steam tables [3]. Thus all the 
assumptions related to physical properties used in the ana- 
lytical model (assumptions (a)-(c)) do not apply here. Simu- 
lations were carried out using two different models for the 
local two-phase pressure gradient. In one case, the homo- 
geneous flow model [I, 21 with arithmetically-averaged vis- 
cosity was used, while in the other case, the separate flow 
model [I. 2, 4. 61 was used, with an approximation for the 
local void fraction [I, 51. 

4. RESULTS AND DISCUSSION 

The model described above (l)-(9) was compared to simu- 
lations of water-steam flow using the following data : 

Inlet temperature : 150°C 
Outlet pressure : 6.7 bar 
Pipe length : 200 m 
Pipe diameter : 0.1 m 
Mass flow rates : 6 < ti < 35 kg s.-’ 
Heat input: IO kW m-l. 

For the analytical model. the fluid properties are taken 
arbitrarily at the intermediate pressure of 7.5 bar. Figure 2 
presents a graph of BP against i for the mathematical model 
and for simulation results. It can be seen that the three graphs 
are qualitatively similar; clearly the possibility of steady- 
state multiplicity is not an artifact of a particular model. 

Figure 3 gives the simulation results using the separated 
flow model (pressure, temperature and vapor fraction pro- 
files) for three different flow rates with the same overall 
pressure drop, verifying the steady state multiplicity pre- 
dicted by the analytical model. 

5. CONCLUDING REMARKS 

It has been shown that flow of fluid in a heated pipe with 
a fixed driving head may have more than one steady state 
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FIG. 3. Simulation results for water-steam flow at three 
different flow rates: - ti = 8.0 kg s- ‘, ‘. ti = 14.0 kg s- ‘, 

- ti = 28.2 kg s- ‘. (The separate flow model was used.) 

flow rate. The phenomenon was verified by simulations with 
different models, but is yet to be verified experimentally. As 
this phenomenon may result in severe operating and control 
problems, its understanding and verification is important. 

Operating problems are expected in cases where the driving 
head in a system such as presented here is independent of the 
flow rate as may be the case in oversized centrifugal pumps. 
In such cases, the extreme sensitivity of the flow rate to 
pressure changes, and the steady-state multiplicity may result 
in hysteresis problems and sudden flow rate variations. Par- 
ticular applications where the observed phenomenon may 
occur are in natural circulation systems such as ther- 
mosyphons and in the cooling tubes of nuclear reactors. 
Again we should note that a condition for the existence of 
the phenomenon is that the fluid enters in a subcooled state. 
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